Respuesta :

Given :

[tex]\longrightarrow \sf \qquad {6x}^{2} + 10x - 56[/tex]

We can write it as,

[tex]\longrightarrow \sf \qquad2 \bigg({3x}^{2} + 5x - 28 \bigg)[/tex]

We have to find the two numbers a and b such that,

[tex]\longrightarrow \sf \qquad a + b = 5[/tex]

[tex]\longrightarrow \sf \qquad a b = 84[/tex]

Obviously, the two numbers are 7 and 12.

[tex]{\longrightarrow \sf \qquad2 \bigg({3x}^{2} - 7x + 12x- 28 \bigg)}[/tex]

[tex]{\longrightarrow \sf \qquad2 \bigg[x \bigg(3x-7 \bigg) +4 \bigg(3x-7\bigg)} \bigg][/tex]

[tex]{\longrightarrow \sf \qquad{2 \bigg(3x - 7 \bigg) \bigg(x + 4\bigg)}}[/tex]

Therefore,

[tex]{\longrightarrow \bf \qquad{2 \bigg(3x - 7 \bigg) \bigg(x + 4\bigg)} \: is \: equivalent} \bf \: \: to \: \: {6x}^{2} + 10x - 56[/tex]