Respuesta :

Answer:

2x² - 12 + 8x

Setting up the equation:

Let that [SOMETHING] be L

  • ⇒ 3x² + 8x - 16 - (L) = x² - 4

To avoid confusion, let's use parenthesis:

  • ⇒ (3x² + 8x - 16) - (L) = (x² - 4)

Simplifying the equation:

Subtract "(3x² + 8x - 16)" both sides to isolate "(L)":

  • ⇒ (3x² + 8x - 16) - (3x² + 8x - 16) - (L) = (x² - 4) - (3x² + 8x - 16)
  • ⇒ -(L) = (x² - 4) - (3x² + 8x - 16)

Take the "-" in the parenthesis:

  • ⇒ -(L) = (x² - 4) + (-3x² - 8x + 16)

Open the parenthesis:

  • ⇒ -L = x² - 4 - 3x² - 8x + 16

Combine like terms and simplify:

  • ⇒ -L = x²(1 - 3) + (-4 + 16) - 8x
  • ⇒ -L = x²(-2) + (12) - 8x
  • ⇒ -L = -2x² + 12 - 8x

Put both terms in parenthesis:

  • ⇒ -(L) = (-2x² + 12 - 8x)

Multiply both sides by -1:

  • ⇒ (L) = -(-2x² + 12 - 8x)
  • ⇒ L = 2x² - 12 + 8x

Thus, the [SOMETHING] is 2x² - 12 + 8x.

Answer:

[tex]2x^2+8x-12[/tex]

Step-by-step explanation:

[tex]P=3x^2+8x-16[/tex]

[tex]= x^2-4[/tex]

The Quantity Subtracted

Let the Quantity be called "y"

[tex]P=y\\3x^2+8x-16-y=x^2-4[/tex]

Bring together like terms

[tex]y= 3x^2-x^2+8x-16+4\\y= 2x^2 + 8x-12[/tex]