Respuesta :

Answer:

C

Step-by-step explanation (A):

[tex]\frac{4}{5}(3x+5y)[/tex]

Apply the Distributive Property

[tex]\frac{4}{5}\times3x+\frac{4}{5}\times5y[/tex]

Cross out the common factor

[tex]\frac{4}{5}\times3x+4y[/tex]

Multiply the monomials

[tex]\frac{12}{5}x+4y[/tex]

Determine true/false

[tex]Determine\ whether\ \frac{12}{5}x+\frac{20}{3}y\ and\\ \frac{4}{5}(3x+5y)\ are\ equivalent\\ False[/tex]

Step-by-step explanation (B):

[tex]\frac{4}{15}(3x-5y)[/tex]

Apply the Distributive Property

[tex]\frac{4}{15}\times3x-\frac{4}{15}\times5y[/tex]

Cross out the common factor

[tex]\frac{4}{5}x-\frac{4}{15}\times5y\\ \frac{4}{5}\times-\frac{4}{3}y[/tex]

Determine true/false

[tex]Determine\ whether\ \frac{12}{5}x+\frac{20}{3}y\ and\ \frac{4}{15}(3x-5y)\ are\ equivalent:[/tex]

[tex]False[/tex]

Step-by-step explanation (C):

[tex]\frac{4}{15}(9x+25y)[/tex]

Apply the Distributive Property

[tex]\frac{4}{15}\times9x+\frac{4}{15}\times25y[/tex]

Cross out the common factor

[tex]\frac{4}{5}\times3x+\frac{4}{15}\times25y\\ \frac{4}{5}\times3x+\frac{4}{3}\times5y[/tex]

Multiply the monomials

[tex]\frac{12}{5}x+\frac{4}{3}\times5y\\ \frac{12}{5}x+\frac{20}{3}y[/tex]

Determine true/false

[tex]Determine\ whether\ \frac{12}{5}x+\frac{20}{3}y\ and\ \frac{4}{15}(9x+25y)\ are\ equivalent:\\ True[/tex]

Step-by-step explanation (D):

[tex]\frac{4}{3}(3x-5y)[/tex]

Apply the Distributive Property

[tex]\frac{4}{3}\times3x-\frac{4}{3}\times5y[/tex]

Cross out the common factor

[tex]4x-\frac{4}{3}\times5y[/tex]

Multiply the monomials

[tex]4x-\frac{20}{3}y[/tex]

Determine true/false

[tex]Determine\ whether\ \frac{12}{5}x+\frac{20}{3}y\ and\ \frac{4}{3}(3x-5y)\ are\ equivalent:\\ False[/tex]

I hope this helps you

:)