Respuesta :

An arithmetic sequence can be expressed as explicitly or recursively

The explicit formula of the sequence is [tex]a_n = 11 - 4n[/tex]

How to determine the explicit formula

The recursive formula is given as:

[tex]a_n = a_{n -1} - 4[/tex]

[tex]a_1 = 7[/tex]

Substitute 2 for n in [tex]a_n = a_{n -1} - 4[/tex]

[tex]a_2 =a_1 - 4[/tex]

This gives

[tex]a_2 =7 - 4[/tex]

[tex]a_2 =3[/tex]

Calculate the common difference (d)

[tex]d = a_2 -a_1[/tex]

[tex]d = 3- 7[/tex]

[tex]d = -4[/tex]

The explicit formula is then calculated as:

[tex]a_n = a_1 + (n - 1)d[/tex]

This gives

[tex]a_n = 7+ (n - 1)*-4[/tex]

Expand

[tex]a_n = 7+4 - 4n[/tex]

[tex]a_n = 11 - 4n[/tex]

Hence, the explicit formula of the sequence is [tex]a_n = 11 - 4n[/tex]

Read more about arithmetic sequence at:

https://brainly.com/question/6561461