Respuesta :

[tex]3\cos x=0\implies \cos x=0[/tex]

This happens when [tex]x[/tex] is an odd multiple of [tex]\dfrac\pi2[/tex], and there are four instances of this happening in the given interval: [tex]\pm\dfrac\pi2,\pm\dfrac{3\pi}2[/tex].

Answer:

[tex]x=-\frac{3\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{3\pi}{2}[/tex]

Step-by-step explanation:

We have to find the zeros of the function f(x)=3cosx at  [-2pi,2pi]

For zeros, we have f(x) = 0

[tex]3\cos x=0[/tex]

Divide both sides by 3

[tex]\cos x=0[/tex]

The value of cos is zero at [tex](2n+1)\frac{\pi}{2}[/tex]

Hence, in the interval [-2pi,2pi], the value of x should be

[tex]x=-\frac{3\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{3\pi}{2}[/tex]