Nonsense will be reported!!

Answer:
3y-2=10
Step-by-step explanation:
Given;
Which of the following does Not belong to the group?
2x > 5 - x
3(x-4) [tex]\leq[/tex] -23
3y - 2 = 10
a < 13a + 1
Solve;
Base on the given data, we can infer that "3y-2=10" does Not belong to the group. You can see that other have Python. Python has six comparison operators: less than ( < ), less than or equal to ( <= ), greater than ( > ), greater than or equal to ( >= ), equal to ( == ), and not equal to ( != ). While, "3y-2=10" doesn't have one.
As well as if you simplify/solve these other will be given as a fraction while "3y-2=10" answer is a whole number.
Solution of each given answer choice;
2x > 5 - x
Add x to both sides
2x + x > 5 - x + x
Simplify
3x > 5
Divide both sides by 3
[tex]\frac{3x}{3} > \frac{5}{3}[/tex]
x[tex]x=\frac{5}{3}[/tex]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3 ( x - 4) [tex]\leq[/tex] - 23
[tex]3\left(x-4\right)\le \:-23\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-\frac{11}{3}\:\\ \:\mathrm{Decimal:}&\:x\le \:-3.66666\dots \\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-\frac{11}{3}]\end{bmatrix}[/tex]
Divide both sides by 3
[tex]\frac{3\left(x-4\right)}{3}\le \frac{-23}{3}[/tex]
Simplify
[tex]x-4\le \:-\frac{23}{3}[/tex]
Add 4 to both side
[tex]x-4+4\le \:-\frac{23}{3}+4[/tex]
Simplify
x [tex]\leq -\frac{11}{3}[/tex]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3y-2 = 10
Add 2 to both sides
[tex]3y-2+2=10+2[/tex]
Simplify
[tex]3y=12[/tex]
Divide both sides by 3
[tex]\frac{3y}{3}=\frac{12}{3}[/tex]
Simplify
y = 4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
a>13a+1
[tex]a > 13a+1\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:a < -\frac{1}{12}\:\\ \:\mathrm{Decimal:}&\:a < -0.08333\dots \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-\frac{1}{12}\right)\end{bmatrix}[/tex]
Subtract 13a from both sides
[tex]a-13a > 13a+1-13a[/tex]
Simplify
[tex]-12a > 1[/tex]
Multiply both sides by -1 (reverse the inequality)
[tex]\left(-12a\right)\left(-1\right) < 1\cdot \left(-1\right)[/tex]
Simplify
[tex]12a < -1[/tex]
Divide both sides by 12
[tex]\frac{12a}{12} < \frac{-1}{12}[/tex]
Simplify
[tex]a < -\frac{1}{12}[/tex]
Hence, Now you can infer that "3y-2=10" does not belong to the group.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~Learn with Lenvy~