Respuesta :

Answer:

x = 24

Step-by-step explanation:

First, substitute x = -6y into the top equation:

-6y + 3y = 12

-3y = 12

Divide both sides by -3, and you get:

y = -4

Now, you plug in the y value to the second equation:

x = -6(-4)

x =24

Given :

[tex]{ \longrightarrow\qquad \sf x + 3y = 12 \: –––– \sf \: (i)}[/tex]

[tex]{ \longrightarrow\qquad \sf x = - 6y \: –––– \sf \: (ii)}[/tex]

(i) – (ii) we get :

[tex]{ \longrightarrow \qquad \sf \: {x + 3y -x = 12 - ( - 6y)}}[/tex]

[tex]{ \longrightarrow \qquad \sf \: { \cancel{x} + 3y \: \cancel{ - \: x }= 12 + 6y}}[/tex]

[tex]{ \longrightarrow \qquad \sf \: { 3y - 6y = 12 }}[/tex]

[tex]{ \longrightarrow \qquad \sf \: { - \: 3y = 12 }}[/tex]

[tex]{ \longrightarrow \qquad \sf {- \: y = \dfrac{12}{3} }}[/tex]

[tex]{ \longrightarrow \qquad \bf \: { y = - \: 4 }}[/tex]

Now, Substituing the value of y in equation (i) :

[tex] \longrightarrow \qquad \sf{x + 3( - 4)= 12}[/tex]

[tex] \longrightarrow \qquad \sf{x - 12= 12}[/tex]

[tex] \longrightarrow \qquad \sf{x = 12 + 12}[/tex]

[tex]\longrightarrow \qquad \bf{x = 24}[/tex]

Therefore,

  • The value of x is 24 .