Respuesta :

[tex]\\ \rm\rightarrowtail -4(2x+1)\leqslant 3(x-5)[/tex]

[tex]\\ \rm\rightarrowtail -8x-4\leqslant 3x-15[/tex]

[tex]\\ \rm\rightarrowtail -11x\leqslant -11[/tex]

[tex]\\ \rm\rightarrowtail x\geqslant 1[/tex]

Answer:

x ≥ 1

Step-by-step explanation:

Given inequality :

-4(2x + 1) ≤ 3(x - 5)

Step 1 : Expand on both sides

  • -4(2x + 1) ≤ 3(x - 5)
  • -8x - 4 ≤ 3x - 15

Step 2 : Bring x terms to one side and numerical terms to the other

  • -8x - 4 ≤ 3x - 15
  • -11x ≤ -11

Step 3 : Divide by -11 on both sides

  • Remember when dividing by a negative number, the sign always changes to become the opposite
  • -11x ≤ -11
  • x ≥ 1

Solution

x ≥ 1