The functions (f.g)(x) and (g.s)(x) are illustrations of composite function
The values of the composite functions are:
(fg)(x) = -6x^2 + 31x - 40 and (gs)(x) = -8x^3 + 38x^2 -49x+ 10
The equation of the functions are given as:
f(x) = 3x - 8
g(x) = -2x + 5
s(x) = 4x^2 - 9x + 2
.
The composite functions are calculated using:
(fg)(x) = f(x) * g(x)
So, we have:
(f g)(x) = (3x - 8) * (-2x + 5)
Evaluate the product
(fg)(x) = -6x^2 + 15x + 16x - 40
Evaluate the like terms
(fg)(x) = -6x^2 + 31x - 40
Also, we have:
(gs)(x) = g(x) * s(x)
So, we have:
(gs)(x) = (-2x + 5) * (4x^2 - 9x + 2)
Expand
(gs)(x) = -8x^3 + 18x^2 -4x + 20x^2 - 45x + 10
Collect like terms
(gs)(x) = -8x^3 + 18x^2 + 20x^2-4x - 45x + 10
Evaluate the like terms
(gs)(x) = -8x^3 + 38x^2 -49x+ 10
Hence, the values of the composite functions are:
(fg)(x) = -6x^2 + 31x - 40 and (gs)(x) = -8x^3 + 38x^2 -49x+ 10
Read more about composite functions at:
https://brainly.com/question/10687170