Respuesta :

[tex]\dfrac12\cos2x=0\implies\cos2x=0[/tex]

Since the cosine is zero when the angle is an odd multiple of [tex]\dfrac\pi2[/tex], you have [tex]2x=\pm\dfrac\pi2,\pm\dfrac{3\pi}2,\pm\dfrac{5\pi}2,\pm\dfrac{7\pi}2[/tex].

Divide both sides by 2 and you get [tex]x=\pm\dfrac\pi4,\pm\dfrac{3\pi}4,\pm\dfrac{5\pi}4,\pm\dfrac{7\pi}4[/tex]

Answer:

The zeros of the function in the interval of [-2π,2π] are

[tex]\pm \frac{\pi}{4},\pm \frac{3\pi}{4},\pm \frac{5\pi}{4},\pm \frac{7\pi}{4}[/tex].

Step-by-step explanation:

The given function is

[tex]f(x)=\frac{1}{2}\cos (2x)[/tex]

We have to find the zeros of the function in the interval of [-2π,2π].

If [tex]\cos x=0[/tex], then

[tex]x=\frac{(2n-1)\pi}{2}[/tex]

Where n is an integer.

Put f(x)=0, to find the zeroes of the function.

[tex]0=\frac{1}{2}\cos (2x)[/tex]

[tex]0=\cos (2x)[/tex]

[tex]2x=\pm \frac{\pi}{2},\pm \frac{3\pi}{2},\pm \frac{5\pi}{2},\pm \frac{7\pi}{2}[/tex]      [tex][\because x\in [-2\pi,2\pi]\Rightarrow 2x\in [-4\pi,4\pi]][/tex]  

Divide both sides by 2.

[tex]x=\pm \frac{\pi}{4},\pm \frac{3\pi}{4},\pm \frac{5\pi}{4},\pm \frac{7\pi}{4}[/tex]

Therefore the zeros of the function in the interval of [-2π,2π] are

[tex]\pm \frac{\pi}{4},\pm \frac{3\pi}{4},\pm \frac{5\pi}{4},\pm \frac{7\pi}{4}[/tex].