What is the value of x in this triangle?
Enter your answer as a decimal in the box. Round only your final
answer to the nearest hundredth. 5, 20, x

What is the value of x in this triangle Enter your answer as a decimal in the box Round only your final answer to the nearest hundredth 5 20 x class=

Respuesta :

Answer:

[tex]\sf x= 14.04^{\circ \:}[/tex]

using tan rule:

[tex]\sf tan(x)= \dfrac{opposite}{adjacent}[/tex]

solve:

[tex]\rightarrow \sf tan(x)= \dfrac{5}{20}[/tex]

[tex]\rightarrow \sf x= tan^{-1}(\dfrac{5}{20})[/tex]

[tex]\rightarrow \sf x= 14.04^{\circ \:}[/tex]

Answer:

x = 14.04° (nearest hundredth)

Step-by-step explanation:

Use the tan trig ratio:

[tex]\mathsf{\tan(\theta)=\dfrac{O}{A}}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Given:

  • [tex]\theta=x[/tex]
  • O = 5
  • A = 20

[tex]\implies \mathsf{\tan(x)=\dfrac{5}{20}}[/tex]

[tex]\implies \mathsf{x=\arctan\left(\dfrac{5}{20}\right)}[/tex]

[tex]\implies \mathsf{x=14.04\textdegree \ (nearest \ hundredth)}[/tex]