contestada

Find the product of z1 and z2, where z1 = 7(cos 40° + i sin 40°) and z2 = 6(cos 145° + i sin 145°).

Respuesta :

For two complex numbers [tex]z_1=re^{i\theta}=r(\cos\theta+i\sin\theta)[/tex] and [tex]z_2=se^{i\varphi}=s(\cos\varphi+i\sin\varphi)[/tex], the product is

[tex]z_1z_2=rse^{i(\theta+\varphi)}=rs(\cos(\theta+\varphi)+i\sin(\theta+\varphi))[/tex]

That is, you multiply the moduli and add the arguments. You have [tex]z_1=7e^{i40^\circ}[/tex] and [tex]z_2=6e^{i145^\circ}[/tex], so the product is

[tex]z_1z_2=7\times6(\cos(40^\circ+145^\circ)+i\sin(40^\circ+145^\circ)=42(\cos185^\circ+i\sin185^\circ)=42e^{i185^\circ}[/tex]
ANSWER

[tex] \boxed {z_1 z_2 = 42( \cos(185 \degree) + i \sin(185 \degree ))}[/tex]

EXPLANATION

The given complex numbers are:

[tex]z_1 = 7( \cos(40 \degree) + i \sin(40 \degree) )[/tex]


and

[tex]z_2= 6( \cos(145 \degree) + i \sin(145\degree) )[/tex]


Recall that;

If

[tex]z_1 = r_1 ( \cos( \theta_1) + i \sin(\theta_1 ))[/tex]

and

[tex]z_2 = r_2 ( \cos(\theta_2) + i \sin(\theta_2 ))[/tex]

Then,


[tex]z_1 z_2 = r_1 r_2 ( \cos( \theta_1 +\theta_2) + i \sin(\theta_1 + \theta_2 ))[/tex]



This implies that,



[tex]z_1 z_2 = 7 \times 6( \cos( 40 \degree +145 \degree) + i \sin(40 \degree +145 \degree ))[/tex]



[tex]z_1 z_2 = 42( \cos(185 \degree) + i \sin(185 \degree ))[/tex]