Respuesta :

Answer:

[tex]\displaystyle y = 5cos\:2\pi{x} + 4[/tex]

Step-by-step explanation:

[tex]\displaystyle \boxed{y = 5sin\:(2\pi{x} + \frac{\pi}{2}) + 4} \\ \\ y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 4 \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \hookrightarrow \boxed{-\frac{1}{4}} \hookrightarrow \frac{-\frac{\pi}{2}}{2\pi} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{1} \hookrightarrow \frac{2}{2\pi}\pi \\ Amplitude \hookrightarrow 5[/tex]

OR

[tex]\displaystyle y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 4 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{1} \hookrightarrow \frac{2}{2\pi}\pi \\ Amplitude \hookrightarrow 5[/tex]

From the above information, you now should have an ideya of how to interpret trigonometric equations like these.

I am delighted to assist you at any time.