A rectangle has a length of √ 72 meters and a width of √ 18 meters. Find its perimeter in exact and approximate forms, and then find its area.

The exact perimeter is _________ meters.

This is approximately ___________ meters. (Round your answer to the nearest tenth)

The area of the rectangle is ____________ square meters.

Respuesta :

Answer:

The exact perimeter is [tex]18\sqrt{2}[/tex] meters.

This is approximately 25.5 meters (nearest tenth).

The area of the rectangle is 36 square meters.

Step-by-step explanation:

Area of a rectangle = width × length

Perimeter of a rectangle = (2 × width) + (2 × length)

Given:

  • length = [tex]\sqrt{72}[/tex] m
  • width = [tex]\sqrt{18}[/tex] m

Perimeter

[tex]\textsf{Perimeter}=2 \sqrt{18} +2\sqrt{72}[/tex]

               [tex]=2 \sqrt{9 \cdot 2} +2\sqrt{36 \cdot 2}[/tex]

               [tex]=2 \sqrt{9} \sqrt{2}+2\sqrt{36}\sqrt{2}[/tex]

               [tex]=2 \cdot 3 \sqrt{2}+2\cdot 6\sqrt{2}[/tex]

               [tex]=6 \sqrt{2}+12\sqrt{2}[/tex]

               [tex]=18\sqrt{2} \textsf{ m}[/tex]

The exact perimeter is [tex]18\sqrt{2}[/tex] meters.

This is approximately 25.5 meters (nearest tenth).

Area

[tex]\textsf{Area}=\sqrt{18} \times \sqrt{72}[/tex]

       [tex]=\sqrt{9 \cdot 2} \times \sqrt{36 \cdot 2}[/tex]

       [tex]=3\sqrt{2} \times 6\sqrt{ 2}[/tex]

       [tex]=18\sqrt{2}\sqrt{ 2}[/tex]

       [tex]=18 \cdot 2[/tex]

       [tex]=36 \textsf{ m}^2[/tex]

The area of the rectangle is 36 square meters.