Respuesta :

Answer:

0

Simplify trigonometry:

[tex]\frac{cos\ \pi+sin(\frac{\pi}{4})}{sec\ (\frac{\pi}{4})}+\frac{tan(\frac{\pi}{4})-cos\ 0}{cos\ (\frac{\pi}{4})}[/tex]

Evaluate the expression

[tex]\frac{-1+sin(\frac{\pi}{2})}{sec\ (\frac{\pi}{4})}+\frac{tan\ (\frac{\pi}{4})-cos\ 0}{cos\ (\frac{\pi}{4})}\\ \frac{-1+1}{sec\ (\frac{\pi}{4})}+\frac{tan(\frac{\pi}{4})-cos\ 0}{cos(\frac{\pi}{4})}\\ \frac{-1+1}{\sqrt2}+\frac{tan(\frac{\pi}{4})-cos\ 0}{cos\ (\frac{\pi}{4})}\\ \frac{-1+1}{\sqrt2}+\frac{1-cos\ 0}{cos\ (\frac{\pi}{4})}\\ \frac{-1+1}{\sqrt2}+\frac{1-1}{cos\ (\frac{\pi}{4})}\\ \frac{-1+1}{\sqrt2}+\frac{1-1}{\frac{\sqrt2}{2}}[/tex]

Apply the Inverse Property of Addition

[tex]\frac{0}{\sqrt2}+\frac{0}{\frac{\sqrt2}{2}}[/tex]

Apply Zero Property of Multiplication

[tex]0[/tex]

I hope this helps you

:)

Otras preguntas