Respuesta :

[tex] \huge \qquad \sf \underline{\boxed{ {☘ \sf Sσlutiσn}}}[/tex]

The distance between the centre and any point satisfying the circle is its radius ~

Hence, the distance between the points is equal to length of radius.

[tex]\qquad \sf  \dashrightarrow \: r = \sqrt{(4 - 1) {}^{2} + (9 - 5) {}^{2} } [/tex]

[tex]\qquad \sf  \dashrightarrow \: r = \sqrt{(3) {}^{2} + (4) {}^{2} } [/tex]

[tex]\qquad \sf  \dashrightarrow \: r = \sqrt{9 + 16} [/tex]

[tex]\qquad \sf  \dashrightarrow \: r = \sqrt{25} [/tex]

[tex]\qquad \sf  \dashrightarrow \: r = 5[/tex]

As we know, equation of a circle is :

[tex] \qquad \sf(x - h) {}^{2} + (y - k) {}^{2} = {r}^{2} [/tex]

where,

  • h = x - coordinate of centre

  • k = y - coordinate of centre

  • r = radius of the circle

Hence, equation of our required clrcle is :

[tex] \qquad \sf(x -1 ) {}^{2} + (y - 5) {}^{2} = {5}^{2} [/tex]

The radius of the circle that has center (1,5) and contains the point (4,9)  is 5 units

How to determine the radius of the circle?

The center of the circle is given as:

Center (a,b) = (1,5)

The point on the circle is given as:

Point (x,y) = (4,9)

The radius is calculated using the following distance equation

[tex]r = \sqrt{(x - a)^2 + (y - b)^2}[/tex]

So, we have:

[tex]r = \sqrt{(4 - 1)^2 + (9 - 5)^2}[/tex]

Evaluate the exponents

[tex]r = \sqrt{25}[/tex]

Take the square root of 5

r = 5

Hence, the radius of the circle is 5 units

Read more about circle equations at:

https://brainly.com/question/1559324

#SPJ5