Respuesta :

[tex]lim \: f(x) = ( \infty + 4)( \infty - 2) {}^{2} \\ x - > \infty [/tex]

[tex]lim \: f(x) = \infty \times \infty \\ x - > \infty [/tex]

[tex]lim \: f(x)= \infty \\ x - > \infty [/tex]

[tex]lim \: \frac{f(x)}{x} = \frac{x(1 - \frac{4}{x})(x - 2) {}^{2} }{x} \\ x - > \infty [/tex]

[tex]lim \: \frac{f(x)}{x} = (1)( \infty - 2) {}^{2} \\ x - > \infty [/tex]

[tex]lim \: \frac{f(x)}{x} = \infty \\ x - > \infty [/tex]

We can then say that the function f(x)=(x-4)(x-2)² admits an asymptotic direction parallel to the y-axis at + and - as well since we have to follow the same steps.

Ver imagen subtomex0