Respuesta :

Answer:

[tex]\dfrac{1}{102}[/tex]

Step-by-step explanation:

Average rate of change of function [tex]f(x)[/tex] over the interval [tex]a \leq x \leq b[/tex] is:

[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]

Given function:

[tex]f(x)=\dfrac{2x-2}{5x-6}[/tex]

Given interval [tex]0\leq x\leq 8[/tex] :

when [tex]x=0[/tex]:

[tex]f(0)=\dfrac{2(0)-2}{5(0)-6}=\dfrac13[/tex]

when [tex]x=8[/tex]:

[tex]f(8)=\dfrac{2(8)-2}{5(8)-6}=\dfrac{7}{17}[/tex]

Therefore, average rate of change:

[tex]\dfrac{f(8)-f(0)}{8-0}=\dfrac{\frac{7}{17}-\frac13}{8}=\dfrac{1}{102}[/tex]