Respuesta :
Factorisation:
[tex]\rightarrow \sf 20mn-15m[/tex]
take 5m as common term
[tex]\rightarrow \sf 5m\left(4n-3\right)[/tex]
solving/simplifying:
[tex]\rightarrow \sf \left(\dfrac{5}{6}z\:+\:5\right)+\left(-\dfrac{1}{3}z-4\right)[/tex]
[tex]\rightarrow \sf \dfrac{5}{6}z+5-\dfrac{1}{3}z-4[/tex]
[tex]\rightarrow \sf \dfrac{5}{6}z-\dfrac{1}{3}z+5-4[/tex]
[tex]\rightarrow \sf \dfrac{5}{6}z-\dfrac{1(2)}{6}z+1[/tex]
[tex]\rightarrow \sf \dfrac{5-2}{6}z+1[/tex]
[tex]\rightarrow \sf \dfrac{3}{6}z+1[/tex]
[tex]\rightarrow \sf \dfrac{1}{2}z+1[/tex]
Answer:
[tex]5m(4n - 3)[/tex]
[tex]\dfrac12z+1[/tex]
Step-by-step explanation:
Given expression:
[tex]20mn-15m[/tex]
Rewrite 20 as [tex]4\cdot 5[/tex]
Rewrite 15 at [tex]3 \cdot 5[/tex]
Therefore,
[tex]20mn-15m=4\cdot 5m\cdot n-3 \cdot 5m[/tex]
Factor out common term [tex]5m[/tex] :
[tex]\implie 5m(4n-3)[/tex]
-------------------------------------------------------------------------------------
Given expression:
[tex]\left(\dfrac56z + 5\right)+\left(-\dfrac13z-4\right)[/tex]
Simplify:
[tex]\dfrac56z+5-\dfrac13z-4[/tex]
Group like terms:
[tex]\dfrac56z-\dfrac13z+5-4[/tex]
Combine like terms:
[tex]\dfrac12z+1[/tex]