Respuesta :

Factorisation:

[tex]\rightarrow \sf 20mn-15m[/tex]

take 5m as common term

[tex]\rightarrow \sf 5m\left(4n-3\right)[/tex]

solving/simplifying:

[tex]\rightarrow \sf \left(\dfrac{5}{6}z\:+\:5\right)+\left(-\dfrac{1}{3}z-4\right)[/tex]

[tex]\rightarrow \sf \dfrac{5}{6}z+5-\dfrac{1}{3}z-4[/tex]

[tex]\rightarrow \sf \dfrac{5}{6}z-\dfrac{1}{3}z+5-4[/tex]

[tex]\rightarrow \sf \dfrac{5}{6}z-\dfrac{1(2)}{6}z+1[/tex]

[tex]\rightarrow \sf \dfrac{5-2}{6}z+1[/tex]

[tex]\rightarrow \sf \dfrac{3}{6}z+1[/tex]

[tex]\rightarrow \sf \dfrac{1}{2}z+1[/tex]

Answer:

[tex]5m(4n - 3)[/tex]

[tex]\dfrac12z+1[/tex]

Step-by-step explanation:

Given expression:

[tex]20mn-15m[/tex]

Rewrite 20 as [tex]4\cdot 5[/tex]

Rewrite 15 at [tex]3 \cdot 5[/tex]

Therefore,

[tex]20mn-15m=4\cdot 5m\cdot n-3 \cdot 5m[/tex]

Factor out common term [tex]5m[/tex] :

[tex]\implie 5m(4n-3)[/tex]

-------------------------------------------------------------------------------------

Given expression:

[tex]\left(\dfrac56z + 5\right)+\left(-\dfrac13z-4\right)[/tex]

Simplify:

[tex]\dfrac56z+5-\dfrac13z-4[/tex]

Group like terms:

[tex]\dfrac56z-\dfrac13z+5-4[/tex]

Combine like terms:

[tex]\dfrac12z+1[/tex]