Respuesta :

[tex]\textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ C=30\pi \end{cases}\implies 30\pi =2\pi r\implies \cfrac{30\pi }{2\pi }=r\implies \boxed{15=r} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\textit{arc's length}\\\\ s = \cfrac{\theta \pi r}{180}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=15\\ \theta =225 \end{cases}\implies \widehat{XY}=\cfrac{(225)\pi (15)}{180}\implies \boxed{\widehat{XY}\approx 58.90} \\\\[-0.35em] ~\dotfill\\\\ \textit{area of a circle}\\\\ A=\pi r^2\qquad \qquad A=\pi (15)^2\implies A=225\pi \implies \boxed{A\approx 706.86}[/tex]