Arc cd located on circle a has a central angle of 135 the radius is the circle is 24 centimeters what is the length of arc cd

[tex]\textit{arc's length}\\\\ s = \cfrac{\theta \pi r}{180}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=24\\ \theta =135 \end{cases}\implies s=\cfrac{(135)\pi (24)}{180}\implies s=18\pi ~cm[/tex]
Answer:
B) 18π cm
Step-by-step explanation:
Step 1
Given:
Central angle θ=135°
Radius of circle r=24 cm
Length of arc CD =θ360°(2πr)
Step 2
l=135°360°×2π×24
l=38×2×π×24
l=3×2π×3
l=18π cm
Therefore
Length of arc CD =18π cm
Thus, option B is correct.