Arc cd located on circle a has a central angle of 135 the radius is the circle is 24 centimeters what is the length of arc cd

Arc cd located on circle a has a central angle of 135 the radius is the circle is 24 centimeters what is the length of arc cd class=

Respuesta :

[tex]\textit{arc's length}\\\\ s = \cfrac{\theta \pi r}{180}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=24\\ \theta =135 \end{cases}\implies s=\cfrac{(135)\pi (24)}{180}\implies s=18\pi ~cm[/tex]

Answer:

B) 18π cm

Step-by-step explanation:

Step 1

Given:

   Central angle θ=135°

    Radius of circle r=24 cm

    Length of arc CD =θ360°(2πr)

Step 2

  l=135°360°×2π×24

    l=38×2×π×24

    l=3×2π×3

      l=18π cm

Therefore

  Length of arc CD =18π cm

Thus, option B is correct.