Respuesta :

Answer:

  A.  2/(1 -x)²

Step-by-step explanation:

The derivative of a ratio is given by the formula ...

  d(u/v) = (v·du =u·dv)/v²

Here, we have ...

  u = 1+x; du = 1·dx

  v = 1 -x; dv = -1·dx

Then ...

  [tex]dy=\dfrac{(1-x)(dx)-(1 +x)(-dx)}{(1-x)^2}\\\\\dfrac{dy}{dx}=\dfrac{1-x +1+x}{(1-x)^2}=\boxed{\dfrac{2}{(1-x)^2}}[/tex]

__

Additional comment

The formula used above is a combination of the power rule and the product rule.

  • d(u^-1) = -du·u^-2 = -du/u² . . . . power rule
  • d(uv) = u·dv +v·du . . . . . . . . product rule