The base of a triangle exceeds the height by 7 feet. If the area is 114 square feet, find the length of the base and the height of
the triangle

Respuesta :

Answer:

Height of the triangle = 12 feet

Base of the triangle = 19 feet

Step-by-step explanation:

Let the height of the triangle be x feet

-> Base of the triangle = (x + 7) feet

[tex]A(\triangle)= 114\: ft^2[/tex]

[tex]\because A(\triangle)=\frac{1}{2}(base)(height) [/tex]

[tex]\implies 114=\frac{1}{2}(x+7)(x) [/tex]

[tex]\implies 114\times 2= x^2+7x[/tex]

[tex]\implies 228= x^2+7x[/tex]

[tex]\implies x^2+7x-228=0[/tex]

[tex]\implies x^2+19x-12x-228=0[/tex]

[tex]\implies x(x+19)-12(x+19)=0[/tex]

[tex]\implies (x+19)(x-12)=0[/tex]

[tex]\implies (x+19)=0,\:\:(x-12)=0[/tex]

[tex]\implies x =-19,\:\:x=12[/tex]

x represents the height of the triangle.

-> x can not take negative value.

[tex]\implies x\neq -19[/tex]

[tex]\implies x = 12[/tex]

[tex]\implies x +7= 12+7=19[/tex]

Thus,

Height of the triangle = 12 feet

Base of the triangle = 19 feet