Answer:
Step-by-step explanation:
[tex]=5\displaystyle\int_{0}^{\pi/6}dx\displaystyle\int_{0}^{2}x\sec^2(xy)dy\\=5\displaystyle\int_{0}^{\pi/6}dx\displaystyle\int_{0}^{2}\sec^2(xy)d(xy)\\=5\displaystyle\int_{0}^{\pi/6}dx\tan(xy)|_{y=0}^{y=2}[/tex]
[tex]=5\displaystyle\int_{0}^{\pi/6}\tan(2x)dx\\=-\frac{5}{2}\ln\cos(2x)|_{0}^{\pi/6}\\=-\frac{5}{2}[\ln\cos(\pi/3) - \ln\cos(0)]\\[/tex]
[tex]=-\frac{5}{2}\ln{\frac{1}{2}[/tex]