Question 2:
If the following frequency distribution shows the average number of students per teacher in the 50 major cities of Pakistan
Class Limits Frequency
9-11 3
12 – 14 5
15 – 17 12
18 – 20 18
21 – 23 8
24 – 26 4
Table 1
Determine
• Range
• Mean
• Median
• Mode
• Standard Deviation
• Relative Dispersion
• Variance
• Kurtosis

Respuesta :

With the frequecy distribution shown in the 50 cities of pakistan,

  • range = 18
  • mean = 18.1
  • median = 19.8333
  • mode = 19.125
  • kurtosis = 2.7508
  • Standard deviation = 3.75

How to find the Range

= highest value - lowest value

= 26.5 - 8.5

= 18

How to find the mean

= ∑ f x / ∑ f

= ∑ f x / N

= 905 / 50

= 18.1

median

= lower limit + ( N/2 - C ) * h / ( frequency of the class interval )

C = cumulative frequency preceeding to the median class frequency

h = class interval

= 18.5 + ( 50 / 2 - ( 5 + 12 ) ) * 3 / 18

= 18.5 + 1.3333

= 19.8333

How to find the mode

The mode is the value with the highest frequency occurence. This is under class 18 - 20

mode = lower limit + ( ( f1 - f0 ) / (2*f1 - f0 - f2 ) ) * h

f1 = fequency of the modal class

f0 = freqency of the preceeding modal class

f2 = frequency of the next modal class

h = class interval

= 18.5 + ( ( 18 - 12 ) / (2 * 18 - 12 - 8 )  ) * 3

= 18 + ( 0.375 ) * 3

= 19.125

How to find the standard deviation

= sqrt ( 1 / N ∑ f ( x - x' )^2 )

= sqrt (1  / 50 * 706.5

= 3.7589

How to solve for relative dispersion

=  standard deviation / mean

= 3.7589 / 3

= 1.2530

What is the variance?

= ( standard deviation )^2

= ( 3.7589 )^2

= 14.1293

How to solve for kurtosis

=  ∑ f ( x - x' )^4 / ( N * ( standard deviation )^4 )

= 27459.405 / ( 50 * 3.7589^4 )

= 2.7509

Read more on frequency distribution here: https://brainly.com/question/1094036

Ver imagen ogorwyne