Respuesta :

the function composed with its inverse (g⁻¹) result in x
basically
(g⁻¹o g)(x)=x

so

(g⁻¹o g)(4)=4

The required value of function g(x) = [tex]\frac{14}{x+3}[/tex],  [tex]((g^{-1} . g )(4))[/tex] is 4 .

Given,

The function g(x) = [tex]\frac{14}{x+3}[/tex],

We have to find [tex](g^{-1} . g )(4))[/tex]

According to the question,

Two functions f and g are inverse functions if fog(x) = x and gof (x) = x for all values of x in the domain of f and g.

g(x)  = [tex]\frac{14}{x+3}[/tex]

at x = 4

[tex]= \frac{14}{4+3} \\\\= \frac{14}{7} \\\\g(4) = 2[/tex]

Then,

[tex]= (g^{-1} . g )(4) = (g^{-1} .(2))[/tex]

Now, Let g(X) = y

[tex]y = \frac{14}{x+3}[/tex]

Cross multiplication,

y ( x +3) = 14

yx + 3y = 14

yx = 14 - 3y

x = [tex]\frac{14-3y}{y}[/tex]

Now, [tex]= (g^{-1} .(x))=\frac{14-3y}{y}[/tex]

At x = 2

= [tex]\frac{14 - 3 (2)}{2}[/tex]

[tex]= \frac{14-6}{2} \\\\= \frac{8}{2}[/tex]

= 4

Hence, The required value of [tex]((g^{-1} . g )(4))[/tex] is 4 .

For the more information about the Function click the link given below.

https://brainly.com/question/14418346