Respuesta :

periodic in x  and 2Pi is the period

Answer:

The period of the given function is [tex]2\pi[/tex]

Step-by-step explanation:

Given : Function [tex]y=1+\tan(\frac{1}{2}x)[/tex]

To find : What is the period of the function?

Solution :

The general form of the tangent function is [tex]f(x)=A+B\tan(Cx)[/tex]

Where, Period of the tangent function is [tex]P=\frac{\pi}{|C|}[/tex]

Now, Compare the general form with the given function.

[tex]y=1+\tan(\frac{1}{2}x)[/tex]

A=1 , B=1 , [tex]C=\frac{1}{2}[/tex]

Period of the function is

[tex]P=\frac{\pi}{|C|}[/tex]

[tex]P=\frac{\pi}{|\frac{1}{2}|}[/tex]

[tex]P=2\pi[/tex]

So, The period of the given function is [tex]2\pi[/tex]