1. determine if the functions are inverse functions
f(x) = x+6
g(x) = x-6
2. determine if the functions are inverse functions
f(x) = -3x-9
g(x) = -1/3x-3

Respuesta :

Answer:

Question 1

The function [tex]f(x) = x + 6[/tex] is one-to-one, so it does have an inverse.

The inverse of +6 is -6, so [tex]f^{-1}(x)=x-6[/tex]

Therefore, g(x) is the inverse of f(x).

Question 2

The function [tex]f(x) = -3x -9[/tex] is one-to-one, so it does have an inverse.

To find the inverse, replace f(x) with y:

[tex]\implies y = -3x -9[/tex]

Rearrange the equation to make x the subject:

[tex]\implies y+9= -3x[/tex]

[tex]\implies x=-\dfrac13(y+9)[/tex]

[tex]\implies x=-\dfrac13y-3[/tex]

Replace x with [tex]f^{-1}(x)[/tex] and y with x:

[tex]\implies f^{-1}(x)=-\dfrac13x-3[/tex]

Therefore, g(x) is the inverse of f(x).