Answer:
B: 27π units²
Step-by-step explanation:
Formula
[tex]\textsf{Area of a sector of a circle}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2[/tex]
where:
- [tex]\theta[/tex] is the angle
- [tex]r[/tex] is the radius
Solution
Given:
- [tex]\theta[/tex] = 120°
- [tex]r[/tex] = 9
Substituting given values into the formula:
[tex]\begin{aligned}\implies \textsf{Area of a sector of a circle }& =\left(\dfrac{120^{\circ}}{360^{\circ}}\right) \pi \cdot 9^2\\ & = \dfrac13 \cdot \pi \cdot 81\\ & = 27 \pi\: \sf units^2\end{aligned}[/tex]