Answer:
[tex] \sf \: j= \frac{−8}{7}s+ \frac{445}{7} , \sf \: s= \frac{−7}{8}j+ \frac{445}{8} [/tex]
Step-by-step explanation:
[tex] \sf \: Let's solve for j. \\ \sf \: 7j+8s=445 \\ \sf \: Step 1: \: Add \: -8s \: to \: both \: s ides. \\ \sf \: 7j+8s+−8s=445+−8s \\ \sf \: 7j=−8s+445 \\ \sf \: Step \: 2: \: Divide \: both \: sides \: by \:7. \\ \sf \frac{7j}{7}= \frac{−8s+445}{7} \\ \sf \: j= \frac{−8}{7}s+ \frac{445}{7} \\[/tex]