Respuesta :
Subtracting 3x^4+9x^3x^2 from the dividend and bringing down by 13x, the quotient is 3x^2-2x+5, and the term 3x^2 in the quotient is the result of dividing 3x^4 by x²
What is polynomial?
Polynomial is the combination of variables and constants in a systematic manner with "n" number of power in ascending or descending order.
We have a polynomial:
[tex]=\rm -2x^3-x^2+13x[/tex]
The dividend polynomial:
[tex]\rm = 3x^4+7x^3+2x^2+13x+5[/tex]
If we subtract the polynomial [tex]\rm 3x^4+9x^3+3x^2[/tex] from the dividend polynomial, we will get:
[tex]\rm = (3x^4+7x^3+2x^2+13x+5)-(3x^4+9x^3+3x^2)[/tex]
[tex]\rm = -2x^3-x^2+13x+5[/tex]
After bringing down 13x, we will get the polynomial:
[tex]=\rm -2x^3-x^2+13x[/tex]
If complete the division of the polynomial, we will get:
[tex]\rm = \frac{(3x^4+7x^3+2x^2+13x+5)}{x^2+3x+1}[/tex]
= [tex]=\rm 3x^2-2x+5[/tex]
Thus, the subtracting 3x^4+9x^3x^2 from the dividend and bringing down by 13x, the quotient is 3x^2-2x+5, and the term 3x^2 in the quotient is the result of dividing 3x^4 by x²
Learn more about Polynomial here:
brainly.com/question/17822016