Respuesta :

In this case, the equation is in vertex form. To graph the parabola, we need to determine the y-intercept, x-intercept(s), and the vertex.

Vertex of Parabola:

Vertex form: y = a(x + h)² - k

  • ⇒ [y = 3(x + 2 - 1] and [y = a(x - h- k]
  • ⇒ Vertex: (h, k) ⇒ (-2, -1)

X-intercept(s) of Parabola:

Assume "y" as 0.

[tex]\implies 0 = 3(x + 2)^{2} - 1[/tex]

[tex]\implies 1 = 3(x + 2)^{2}[/tex]

Take square root both sides and simplify:

[tex]\implies\sqrt{1} = \sqrt{3(x + 2)^{2}}[/tex]

[tex]\implies1 = \sqrt{3 \times (x + 2) \times (x + 2)}[/tex]

[tex]\implies1 = (x + 2) \times \sqrt{3[/tex]

Divide √3 both sides:

[tex]\implies \±\huge\text{(}\dfrac{1 }{\sqrt{3}} \huge\text{)} = (x + 2)[/tex]    

[tex]\implies \±\huge\text{(}\dfrac{\sqrt{1} }{\sqrt{3}} \huge\text{)} = (x + 2)[/tex]    

Multiply √3 to the numerator and the denominator:

[tex]\implies \±\huge\text{(}\dfrac{\sqrt{1} \times \sqrt{3} }{\sqrt{3\times \sqrt{3}}} \huge\text{)} = (x + 2)[/tex]

[tex]\implies \±\huge\text{(}\dfrac{\sqrt{3} }{3}} \huge\text{)} = (x + 2)[/tex]

[tex]\implies \±\huge\text{(}\dfrac{\sqrt{3} }{3}} \huge\text{)} - 2 =x[/tex]

[tex]\implies x = \underline{-2.6...} \ \text{and} \ \underline{-1.4...} \ \ \ \ (\text{Nearest tenth})[/tex]

Y-intercept of Parabola:

Assume "x" as 0.

  • ⇒ y = 3(0 + 2)² - 1
  • ⇒ y = 3(2)² - 1
  • ⇒ y = 3(4) - 1
  • ⇒ y = 12 - 1
  • ⇒ y = 11

y-intercept = 11 ⇒ (0, 11)

Determining the direction of the parabola:

Since the first cooeficient is positive (+3), the direction of the parabola will be upwards.

Determining the axis of symmetry line:

Axis of symmetry line: x-coordinate of vertex

Axis of symmetry line: x = -2

Plot the following on the graph:

  • y-intercept ---> 11 -----> (0, 11)
  • x-intercept(s) -----> -1.4 and -2.6 -------> (-1.4, 0) and (-2.6, 0)
  • Vertex -------> (-2, -1)
  • Axis of symmetry ----> x = -2

Refer to graph attached.

Ver imagen IBrainlyExpertI

Answer:

Vertex

Vertex form of a quadratic equation:

[tex]y=a(x-h)^2+k\quad \textsf{where }(h,k)\:\textsf{is the vertex}[/tex]

Given equation:  [tex]y=3(x+2)^2-1[/tex]

Therefore, the vertex is (-2, -1)

x-intercepts (zeros)

The x-intercepts are when [tex]y=0[/tex]:

[tex]\implies 3(x+2)^2-1=0[/tex]

[tex]\implies 3(x+2)^2=1[/tex]

[tex]\implies (x+2)^2=\dfrac13[/tex]

[tex]\implies x+2=\pm\sqrt{\dfrac13}[/tex]

[tex]\implies x+2=\pm\dfrac{\sqrt{3}}{3}[/tex]

[tex]\implies x=-2\pm\dfrac{\sqrt{3}}{3}[/tex]

[tex]\implies x=\dfrac{-6\pm\sqrt{3}}{3}[/tex]

Therefore, the x-intercepts are at -2.6 and -1.4 (nearest tenth)

y-intercept

The y-intercept is when [tex]x=0[/tex]:

[tex]\implies 3(0+2)^2-1=11[/tex]

So the y-intercept is at (0, 11)

Plot the graph

  • As the leading coefficient is positive, the parabola will open upwards.
  • Plot the vertex at (-2, -1)
  • Plot the x-intercepts (-2.6, 0) and (-1.4, 0)
  • Plot the y-intercept (0, 11)

The axis of symmetry is the x-value of the vertex.  Therefore, the parabola is symmetrical about x = -2

**You don't need to plot the axis of symmetry - I have added it so that it is easier to draw the curve**

Ver imagen semsee45