Respuesta :

Answer:

1. 4[tex]x^{3}[/tex] + 26x² + 4x - 48

2. 2[tex]x^{3}[/tex] - 23x² + 60x - 32

3. [tex]x^{5}[/tex] + 7[tex]x^{3}[/tex] - 4x + 2[tex]x^{4}[/tex] + 14x² - 8

4. 2[tex]x^{7}[/tex] + [tex]x^{6}[/tex] - 28[tex]x^{5}[/tex] + 3x + 12

Step-by-step explanation:

To multiply polynomials, simply distribute whatever's outside the largest set of parenthesis, then combine like terms.

1) Distribute the parenthesis (x + 6):

x(4x² + 2x - 8)  +  6(4x² + 2x - 8)

4[tex]x^{3}[/tex] + 2x² -8x  +  6(4x² + 2x -8)

4[tex]x^{3}[/tex] + 2x² -8x + 24x² + 12x - 48

Combine like terms:

4[tex]x^{3}[/tex] + 26x² + 4x - 48

2) Distribute the parenthesis (x - 8):

x(2x² - 7x + 4)  +  (-8)(2x² - 7x + 4)

2[tex]x^{3}[/tex] - 7x² + 4x  +  (-8)(2x² - 7x + 4)

2[tex]x^{3}[/tex] - 7x² + 4x  +  -16x² + 56x - 32

Combine like terms:

2[tex]x^{3}[/tex] - 23x² + 60x - 32

3) Distribute the parenthesis (x + 2):

x([tex]x^{4}[/tex] + 7x² - 4)  +  2([tex]x^{4}[/tex] + 7x² - 4)

[tex]x^{5}[/tex] + 7[tex]x^{3}[/tex] - 4x  +  2([tex]x^{4}[/tex] + 7x² - 4)

[tex]x^{5}[/tex] + 7[tex]x^{3}[/tex] - 4x + 2[tex]x^{4}[/tex] + 14x² - 8

No like terms to combine, so:

[tex]x^{5}[/tex] + 7[tex]x^{3}[/tex] - 4x + 2[tex]x^{4}[/tex] + 14x² - 8

4) Distribute the parenthesis (x + 4):

x(2[tex]x^{6}[/tex] - 7[tex]x^{5}[/tex] + 3)  +  4(2[tex]x^{6}[/tex] - 7[tex]x^{5}[/tex] + 3)

2[tex]x^{7}[/tex] - 7[tex]x^{6}[/tex] + 3x  +  4(2[tex]x^{6}[/tex] - 7[tex]x^{5}[/tex] + 3)

2[tex]x^{7}[/tex] - 7[tex]x^{6}[/tex] + 3x + 8  [tex]x^{6}[/tex] - 28[tex]x^{5}[/tex] + 12

Combine like terms:

2[tex]x^{7}[/tex] + [tex]x^{6}[/tex] - 28[tex]x^{5}[/tex] + 3x + 12

hope this helps!