Respuesta :

Expanding the cube, we have

[tex]\dfrac1{(a+b+c)^3} = \left(\dfrac1{a+b+c}\right)^3 \\\\ = \dfrac1{a^3} + \dfrac1{b^3} + \dfrac1{c^3} + 3 \left(\dfrac1{a^2b} + \dfrac1{a^2c} + \dfrac1{ab^2} + \dfrac1{b^2c} + \dfrac1{ac^2} + \dfrac1{bc^2}\right) + \dfrac6{abc}[/tex]

so it remains to be shown that

[tex]3 \left(\dfrac1{a^2b} + \dfrac1{a^2c} + \dfrac1{ab^2} + \dfrac1{b^2c} + \dfrac1{ac^2} + \dfrac1{bc^2}\right) + \dfrac6{abc} = 0[/tex]

Factorize the grouped sum on the left as

[tex]\dfrac1{a^2b} + \dfrac1{a^2c} + \dfrac1{ab^2} + \dfrac1{b^2c} + \dfrac1{ac^2} + \dfrac1{bc^2} = \dfrac1{abc} \left(\dfrac ca + \dfrac ba + \dfrac cb + \dfrac ab + \dfrac bc + \dfrac ac\right)[/tex]

so that with simplification, it remains to be shown that

[tex]\dfrac ca + \dfrac ba + \dfrac cb + \dfrac ab + \dfrac bc + \dfrac ac + 2 = 0[/tex]

With a little more manipulation, we have

[tex]\dfrac ba + \dfrac ca = \dfrac{a+b+c}a - 1[/tex]

[tex]\dfrac cb + \dfrac ab = \dfrac{a+b+c}b - 1[/tex]

[tex]\dfrac bc + \dfrac ac = \dfrac{a+b+c}c - 1[/tex]

so that our equation simplifies to

[tex]\dfrac{a+b+c}a + \dfrac{a+b+c}b + \dfrac{a+b+c}c - 1 = 0[/tex]

which we can factorize as

[tex](a+b+c)\left(\dfrac1a+\dfrac1b+\dfrac1c\right) - 1 = 0[/tex]

Finish up by using the hypothesis:

[tex]\left(\dfrac1{\frac1{a+b+c}}\right)\left(\dfrac1a+\dfrac1b+\dfrac1c\right) - 1 = 0[/tex]

[tex]\underbrace{\left(\dfrac1{\frac1a+\frac1b+\frac1c}\right)\left(\dfrac1a+\dfrac1b+\dfrac1c\right)}_{=1} - 1 = 0[/tex]

and the conclusion follows.