WSP CAN SOMEONE ACTUALLY HELP N EXPLAIN IM LOST

Answer:
Option A
Step-by-step explanation:
Given expression:
Option A
⇒ (x - 4)(3x + 2)
⇒ (x × 3x) + (2 × x) + (-4 × 3x) + (-4 × 2)
⇒ (3x²) + (2x) + (-12x) + (-8)
⇒ 3x² + 2x - 12x - 8
⇒ 3x² - 10x - 8
3x² - 10x - 8 = 3x² - 10x - 8 (Yes!)
Option B
⇒ (3x - 4)(x - 2)
⇒ (3x × x) + (3x × -2) + (-4 × x) + (-4 × -2)
⇒ (3x²) + (-6x) + (-4x) + (8)
⇒ 3x² - 6x - 4x + (8)
⇒ 3x² - 10x + 8
3x² - 10x - 8 = 3x² - 10x + 8 (No!)
Option C
⇒ (3x - 4)(x + 2)
⇒ (3x × x) + (3x × 2) + (-4 × x) + (-4 × 2)
⇒ (3x²) + (6x) + (-4x) + (-8)
⇒ 3x² + 6x - 4x - 8
⇒ 3x² + 2x - 8
3x² - 10x - 8 = 3x² + 2x - 8 (No!)
Option D
⇒ (3x - 2)(x - 4)
⇒ (3x × x) + (3x × -4) + (-2 × x) + (-2 × -4)
⇒ (3x²) + (-12x) + (-2x) + (8)
⇒ 3x² - 12x - 2x + 8
⇒ 3x² - 14x + 8
3x² - 10x - 8 = 3x² - 14x + 8 (No!)
Since the expression of option A has the same value as the given expression, option A is correct.
Answer:
Hi! Let's find which expression is equivalent to [tex]3x^{2} - 10x - 8[/tex]. First, remember that expressions are equivalent when they have identical solutions or roots. That means we have to do three things:
- solve [tex]3x^{2} - 10x - 8[/tex]
- review the listed expressions
- determine which solution is equivalent to the solution of [tex]3x^{2} - 10x - 8[/tex]
First, let's solve [tex]3x^{2} - 10x - 8[/tex].
Use the sum-product pattern -
3x^2 - 10x - 8
3x^2 + 2x - 12x - 8
Common factor from the two pairs -
3x^2 + 2x - 12x - 8
x(3x + 2) - 4(3x + 2)
Rewrite in factored form -
x(3x + 2) - 4(3x + 2)
(x - 4)(3x + 2)
Now, let's review the listed expressions. We have:
A. (x - 4)(3x + 2)
B. (3x - 4)(x - 2)
C. (3x - 4)(x + 2)
D. (3x - 2)(x + 4)
We're looking for one of these expressions to be equivalent to the solution of [tex]3x^{2} - 10x - 8[/tex], which we know is (x - 4)(3x + 2). The first choice, A. (x - 4)(3x + 2), would be our answer!
I hope this helps you. Have a wonderful day and let me know if I can help you with anything else! =)