Respuesta :

Answer:

[tex]\frac{(2x^{2} + y^{2}) (5x^{2} - 3^{2} }{x^{2} y^{2} }[/tex]

Step-by-step explanation:

Find the solution below.

Ver imagen shadrach3d

Answer:    (5x2 + 3y2) • (2x2 + y2) ————————————————————————           x2y2

Step-by-step explanation:

    STEP 1:  y2

Simplify   ——

                  x2

Equation at the end of step 1:       (x2)        y2

 ((10•————)-1)-(3•——)

      (y2)        x2

STEP 2 :            x2

Simplify   ——

           y2

Equation at the end of step 2:         x2           3y2

 ((10 • ——) -  1) -  ———

        y2           x2

STEP 3:Rewriting the whole as an Equivalent Fraction  3.1   Subtracting a whole from a fraction Rewrite the whole as a fraction using  y2  as the denominator :         1     1 • y2

   1 =  —  =  ——————

        1       y2  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominatorAdding fractions that have a common denominator : 3.2       Adding up the two equivalent fractions Add the two equivalent fractions which now have a common denominatorCombine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible: 10x2 - (y2)     10x2 - y2

———————————  =  —————————

    y2             y2    

Equation at the end of step 3:  (10x2 - y2)    3y2

 ——————————— -  ———

     y2         x2

STEP 4:Trying to factor as a Difference of Squares: 4.1      Factoring:  10x2-y2 Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)Proof :  (A+B) • (A-B) =         A2 - AB + BA - B2 =         A2 - AB + AB - B2 =          A2 - B2Note :  AB = BA is the commutative property of multiplication. Note :  - AB + AB equals zero and is therefore eliminated from the expression.Check :  10  is not a square !! Ruling : Binomial can not be factored as thedifference of two perfect squaresCalculating the Least Common Multiple : 4.2    Find the Least Common Multiple       The left denominator is :       y2       The right denominator is :       x2                   Number of times each Algebraic Factor            appears in the factorization of:    Algebraic        Factor     Left  Denominator  Right  Denominator  L.C.M = Max  {Left,Right}  x 022 y 202      Least Common Multiple:       x2y2 Calculating Multipliers : 4.3    Calculate multipliers for the two fractions     Denote the Least Common Multiple by  L.C.M     Denote the Left Multiplier by  Left_M     Denote the Right Multiplier by  Right_M     Denote the Left Deniminator by  L_Deno     Denote the Right Multiplier by  R_Deno    Left_M = L.C.M / L_Deno = x2   Right_M = L.C.M / R_Deno = y2Making Equivalent Fractions : 4.4      Rewrite the two fractions into equivalent fractionsTwo fractions are called equivalent if they have the same numeric value.