using law of indices

Answer:
1
Step-by-step explanation:
There are a couple of identities that come into play here:
a³ -b³ = (a -b)(a² +ab +b²)
(x^a)/(x^b) = x^(a-b)
(x^a)^b = x^(ab)
(x^a)(x^b) = x^(a+b)
_____
These mean we can simplify the expression as follows.
[tex]\left(\dfrac{x^{a}}{x^{b}}\right)^{a^2+ab+b^2}\times\left(\dfrac{x^{b}}{x^{c}}\right)^{b^2+bc+c^2}\times\left(\dfrac{x^{c}}{x^{a}}\right)^{c^2+ca+a^2}\\\\=x^{(a-b)(a^2+ab+b^2)}\times x^{(b-c)(b^2+bc+c^2)}\times x^{(c-a)(c^2+ca+a^2)}\\\\=x^{a^3-b^3}\times x^{b^3-c^3}\times x^{c^3-a^3}=x^{(a^3+b^3+c^3)-(a^3+b^3+c^3)}\\\\=x^0=\boxed{1}[/tex]
The expression has a value of 1.
__
Additional comment
For certain values of x and the exponents, the individual factors may exceed the ability of a calculator to express the value. That is, an attempt at numerical evaluation of this may produce a result different from 1. In any event, the expression is undefined for x=0.