Respuesta :

Answer:

n = 2

Step-by-step explanation:

Given equation:

[tex]\left(\dfrac35\right)^2 \times 25=3^n[/tex]

[tex]\textsf{Apply exponent rule }\left(\dfrac{a}{b}\right)^c=\dfrac{a^c}{b^c} :[/tex]

[tex]\implies \left(\dfrac{3^2}{5^2}\right) \times 25=3^n[/tex]

[tex]\textsf{Apply}\: \left(\dfrac{a}{b}\right) \times c=\dfrac{ac}{b} :[/tex]

[tex]\implies \dfrac{3^2\cdot 25}{5^2}=3^n[/tex]

[tex]\textsf{Apply}\:5^2=5 \times 5=25:[/tex]

[tex]\implies \dfrac{3^2\cdot 25}{25}=3^n[/tex]

Cancel the common factor 25:

[tex]\implies 3^2=3^n[/tex]

[tex]\textsf{If}\:a^{f(x)}=a^{g(x)},\:\textsf{then}\:f(x)=g(x) :[/tex]

[tex]\implies 2=n[/tex]

Answer:

n = 2

Step-by-step explanation:

Hello!

Step 1: Expand the fraction

We can use the exponent rule to square 3/5.

  • ([tex]\frac35[/tex])² = [tex]\frac{3^2}{5^2}[/tex]
  • [tex]\frac{9}{25}[/tex]

Step 2: Simplify

Now, we can multiply

  • [tex]\frac{9}{25} * 25 = 3^n[/tex]
  • [tex]9 = 3^n[/tex]

Now, we need to find how many times 3 is multiplied to get 9 ,and that would be 2