Respuesta :

Answer:

  • Solution of equation ( x ) = 7

Step-by-step explanation:

In this question we have given with an equation that is 4 ( 5x - 2 ) = 2 ( 9x + 3 ). And we are asked to solve this equation that means we have to find the value of x.

Solution : -

[tex] \quad \longrightarrow \: 4 ( 5x - 2 ) = 2 ( 9x + 3 )[/tex]

Step 1 : Removing parenthesis :

[tex] \quad \longrightarrow \:20x - 8 = 18x + 6[/tex]

Step 2 : Adding 8 from both sides :

[tex] \quad \longrightarrow \:20x - \cancel{ 8 }+ \cancel{8} = 18x + 6 + 8[/tex]

On further calculations we get :

[tex] \quad \longrightarrow \:20x = 18x + 14[/tex]

Step 3 : Subtracting 18 from both sides :

[tex] \quad \longrightarrow \:20x - 18x = \cancel{18x }+ 14 - \cancel{18}[/tex]

On further calculations we get :

[tex] \quad \longrightarrow \:2x = 14[/tex]

Step 4 : Dividing with 2 on both sides :

[tex] \quad \longrightarrow \: \frac{ \cancel{ 2}x}{ \cancel{2}} = \cancel{\frac{14}{2} }[/tex]

On further calculations we get :

[tex] \quad \longrightarrow \: \blue{\boxed{ \frak{x = 7}}}[/tex]

  • Therefore, solution of this equation is 7 or we can say that value of this equation is 7 .

Verifying : -

We are verifying our answer by substituting value of x in given equation. So ,

  • 4 ( 5x - 2 ) = 2 ( 9x + 3 )

  • 4 [ 5 ( 7 ) - 2 ] = 2 [ 9 ( 7 ) + 3 ]

  • 4 ( 35 - 2 ) = 2 ( 63 + 3 )

  • 4 ( 33 ) = 2 ( 66 )

  • 132 = 132

  • L.H.S = R.H.S

  • Hence, Verified.

Therefore, our value for x is correct .

#Keep Learning

Answer:

  • 7

[tex] \: [/tex]

Step-by-step explanation:

In the above question, we have to solve the equation and find the value of x. So,

[tex] \\ {\longrightarrow \pmb{\sf {\qquad 4(5x-2)=2(9x+3) }}} \\ \\ [/tex]

Using distributive property we get :

[tex] \\ {\longrightarrow \pmb{\sf {\qquad 20x-8=18x+6 }}} \\ \\ [/tex]

Adding (-18x) to both sides we get :

[tex]\\ {\longrightarrow \pmb{\sf {\qquad 20x-8 + ( - 18x)= \cancel{18x}+6 + \cancel{( - 18x) }}}} \\ \\ [/tex]

[tex] {\longrightarrow \pmb{\sf {\qquad 2x-8=6 }}} \\ \\ [/tex]

Now Adding 8 to both sides we get :

[tex]\\ {\longrightarrow \pmb{\sf {\qquad 2x-8 + 8=6 + 8 }}} \\ \\ [/tex]

[tex]{\longrightarrow \pmb{\sf {\qquad 2x=14 }}} \\ \\ [/tex]

Dividing both sides by 2 we get :

[tex] \\ {\longrightarrow \pmb{\sf {\qquad \frac{2x}{2} = \frac{14}{2} }}} \\ \\ [/tex]

[tex]{\longrightarrow \pmb{\frak {\qquad x=7 }}} \\ \\ [/tex]

Therefore,

  • The value of x is 7