Respuesta :

Answer:

Step-by-step explanation:

(x+y)/2 - (x-y)/6 = 16

x/3 + (x+2y)/3 = 14

Multiply first equation by 6

3(x+y) - (x - y) = 96

2x + 4y = 96

x + 2y = 48       (A)

Multiply second equation by 3

x  + x + 2y = 42

x + y = 21         (B)

Subtract  A - B:-

y = 27

So:

x + 27 = 21

x = -6.

The quadratic relation

is f(x) = a(x - 27)(x + 6)

=   a(x^2 - 21x - 162)     where a is some constant

Vertex form:

f(x) = a[(x - 10.5)^2 - 110.25 - 162]  

f(x)  = a[(x - 10.5)^2 - 272.25]

f(x) = a[(x - 10.5)^2 -  272.25a.