Respuesta :

Answer:

[tex]\Longrightarrow: \boxed{\sf{25x^2-30x+9}}[/tex]

Step-by-step explanation:

Isolate the term of x from one side of the equation.

Use the perfect square formula.

[tex]\underline{\text{PERFECT SQUARE FORMULA:}}[/tex]

[tex]\Longrightarrow: \sf{(A-B)^2=A^2-2AB+B^2}[/tex]

(5x-3)²

(5x-3)²= (5x)²-2*5x*3+3²

Solve.

[tex]\sf{(5x)^2-2*5x*3+3^2=\boxed{\sf{25x^2-30x+9}}}[/tex]

  • Therefore, the final answer is 25x²-30x+9.

Answer:

  • 25x² - 30x + 9

Step-by-step explanation:

The identity

  • (a - b)² = a² - 2ab + b²

In this case, a = 5x and b = 3, so substituting the values :

  • (5x - 3)²
  • (5x)² - 2(5x)(3) + (3)²
  • 25x² - 30x + 9