Trevor is analyzing a circle, y2 + x2 = 100, and a linear function g(x). Will they intersect? y2 + x2 = 100 g(x) graph of the function y squared plus x squared equals 100 x g(x) −1 −22 0 −20 1 −18
Yes, at positive x coordinates
Yes, at negative x coordinates
Yes, at negative and positive x coordinates
No, they will not intersect

Respuesta :

Answer:

Yes, at positive x coordinates

Step-by-step explanation:

Find the equation of g(x)

Given ordered pairs of g(x):  (-1, -22)  (0, -20)  (1, -18)

[tex]\sf let\:(x_1,y_1)=(0,-20)[/tex]

[tex]\sf let\:(x_2,y_2)=(1,-18)[/tex]

[tex]\sf slope\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{-18-(-20)}{1-0}=2[/tex]

Point-slope form of linear function: [tex]\sf y-y_1=m(x-x_1)[/tex]

[tex]\implies \sf y-(-20)=2(x-0)[/tex]

[tex]\implies \sf y=2x-20[/tex]

Substitute the equation of g(x) into the equation of the circle and solve for x

Given equation:  [tex]y^2+x^2=100[/tex]

[tex]\implies (2x-20)^2+x^2=100[/tex]

[tex]\implies 4x^2-80x+400+x^2=100[/tex]

[tex]\implies 5x^2-80x+300=0[/tex]

[tex]\implies x^2-16x+60=0[/tex]

[tex]\implies x^2-10x-6x+60=0[/tex]

[tex]\implies x(x-10)-6(x-10)=0[/tex]

[tex]\implies (x-6)(x-10)=0[/tex]

Therefore:

[tex](x-6)=0 \implies x=6[/tex]

[tex](x-10)=0 \implies x=10[/tex]

So the linear function g(x) will intersect the equation of the circle at positive x coordinates.