Answer:
S₁₁ = 88573
Step-by-step explanation:
the sum to n terms of a geometric sequence is
[tex]S_{n}[/tex] = [tex]\frac{a_{1}(r^{n}-1) }{r-1}[/tex]
where a₁ is the first term and r the common ratio
here a₁ = 1 and r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{3}{1}[/tex] = 3 , then
S₁₁ = [tex]\frac{1(3^{11}-1) }{3-1}[/tex] = [tex]\frac{1}{2}[/tex] (177147 - 1) = [tex]\frac{1}{2}[/tex] × 177146 = 88573