Respuesta :

The proof of d^2y/dx^2 - 2 cot x dy/dx +3y = 0 is determined as 6cos²xsinx - 3sin³x - ​6cos²xsinx  + 3sin³x = 0

Equation of the derivatives

The equation is given as;

[tex]\frac{d^2y}{dx^2} - 2\ cotx \ \frac{dy}{dx} \ + 3y = 0 \ \ ---(1)[/tex]

y = sin³x

First derivative of y

y = sin³x

let u = sinx  (du/dx = cosx)

y = u³

dy/du = 3u²

[tex]\frac{dy}{dx} = \frac{dy}{du} \ .\ \frac{du}{dx} \\\\[/tex]

dy/dx = 3u² x cosx

dy/dy = 3sin²xcosx

y' = 3sin²xcosx

Second derivative of y

y' = 3sin²xcosx

let u = sin²x  (du/dx = 2sinxcosx)

    v = cosx  (dv/dx = -sinx)

[tex]y'' = \frac{d^2y}{dx^2} = V\frac{du}{dx} + U\frac{dv}{dx}[/tex]

y'' = 3[cosx(2sinxcosx) + sin²x(-sinx)]

y'' = 6cos²xsinx  - 3sin³x

Substitute first derivative and second derivative of y in equation (1)

[tex]\frac{d^2y}{dx^2} - 2\ cotx \ \frac{dy}{dx} \ + 3y \\\\(6cos^2xsinx \ - \ 3sin^3x) \ - \ 2(\frac{cosx}{sinx} )(3sin^2xcosx) \ + 3(sin^3x) \\\\6cos^2xsinx \ - \ 3sin^3x \ - 6cos^2xsinx \ + \ 3sin^3x = 0 \ \ proved[/tex]

Learn more about differentiation here: https://brainly.com/question/25081524