Respuesta :

Answer:

C. 2160π units³

Step-by-step explanation:

Volume of a cylinder is given by the formula :

V = πr²h

Substituting values given gives us :

V = π(12)²(15)

V = π(144)(15)

V = 2160π units³ (since it is volume)

Answer:

[tex]\boxed{\sf{C. \quad 2160\pi \quad units^3}}[/tex]

Step-by-step explanation:

It is necessary to use their formula to solve this problem with the volume of the cylinder.

Volume of the cylinder formula:

[tex]\Longrightarrow: \sf{V=\pi r^2h}}[/tex]

[tex]\sf{12^2(15)}[/tex]

Solve.

Use the order of operations.

PEMDAS stands for:

  • Parentheses
  • Exponents
  • Multiply
  • Divide
  • Add
  • Subtract

First, solve with exponents.

[tex]\sf{12^2=12*12=144}[/tex]

Then, rewrite the problem down.

144(15)

Multiply.

[tex]\sf{144*15=\boxed{\sf{2160}}}[/tex]

  • Therefore, the correct answer is C. 2160π units³.