KM0618
contestada

PLEASE HELP ASAPP!! WILL MARK BRAINLIEST (NO LINKS)

Find the axis of symmetry and
the
vertex of the graph of y = 3x^2
-18x + 17

PLEASE HELP ASAPP WILL MARK BRAINLIEST NO LINKS Find the axis of symmetry and the vertex of the graph of y 3x2 18x 17 class=

Respuesta :

Answer:

vertex: (3, -10)

axis of symmetry:  x = 3

Step-by-step explanation:

Vertex form of a quadratic equation:  [tex]y=a(x-h)^2+k[/tex]

(where (h, k) is the vertex)

Rewrite the given equation in vertex form by completing the square.

Given equation:

[tex]y=3x^2-18x+17[/tex]

Add 10 to both sides:

[tex]y+10=3x^2-18x+27[/tex]

Factor RHS:

[tex]y+10=3(x^2-6x+9)[/tex]

[tex]y+10=3(x-3)^2[/tex]

Subtract 10 from both sides:

[tex]y=3(x-3)^2-10[/tex]

Therefore, the vertex is (3, -10)

The axis of symmetry is the x-value of the vertex.  
Therefore, the axis of symmetry is x = 3.

Esther

Answer:

Axis of symmetry: x = 3

Vertex: (3, -10)

Step-by-step explanation:

y = 3x² - 18x + 17

Axis of symmetry formula: x = [tex]\sf{\frac{-b}{2a}}[/tex]

  • a = 3
  • b = -18

[tex]\sf x={\frac{-b}{2a}}\implies \textsf{Substitute -18 for b and 3 for a}\\\\\sf\ x={\frac{-(-18)}{2(3)}}\implies\textsf{multiplying 2 negatives makes a positive}\\\\\sf\ x={\frac{18}{6}}\implies \textsf{divide}\\\\\ \boxed{\sf x=3}\implies \textsf{axis of symmetry}[/tex]

Now, substitute 3 for x in your original equation to find the value of y:

y = 3x² - 18x + 17

y = 3(3)² - 18(3) + 17 <== exponents first

y = 3(9) - 54 + 17 <== multiply

y = 27 - 54 + 17 <== subtract

y = -27 + 17 <== add

y = -10

Vertex: (3, -10)

Hope this helps!