[tex]\textit{ellipse, horizontal major axis} \\\\ \cfrac{(x- h)^2}{ a^2}+\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2- b ^2} \end{cases} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\cfrac{(x+4)^2}{400}~~ + ~~\cfrac{(y+3)^2}{144}~~ = ~~1\implies \cfrac{[x-(-4)]^2}{20^2}~~ + ~~\cfrac{[y-(-3)]^2}{12^2}~~ = ~~1 \\\\\\ \begin{cases} h=-4\\ k=-3\\ a=20\\ b=12 \end{cases}\qquad \qquad c=\sqrt{20^2-12^2}\implies c=\sqrt{256}\implies \boxed{c=16} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{center}{(-4,-3)}\qquad vertices \begin{cases} (\stackrel{-4-20}{-24}~~,~~-3)\\\\ (\stackrel{-4+20}{16}~~,~~-3) \end{cases}\qquad foci \begin{cases} (\stackrel{-4-16}{-20}~~,~~-3)\\\\ (\stackrel{-4+16}{12}~~,~~-3) \end{cases}[/tex]