Respuesta :

Answer:

[tex]\textsf{D.}\quad\dfrac{b}{\sqrt{a^2+b^2}}[/tex]

Step-by-step explanation:

Tan trig ratio

[tex]\tan(x)=\sf \dfrac{O}{A}[/tex]

where:

  • [tex]x[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Using the given information:

[tex]\implies x=\tan^{-1}\left(\dfrac{a}{b}\right)[/tex]

[tex]\implies \tan(x)=\tan\left(\tan^{-1}\left(\dfrac{a}{b}\right)\right)[/tex]

[tex]\implies \tan(x)=\left(\dfrac{a}{b}\right)[/tex]

Comparing this with the trig ratio, we can say that:

[tex]x[/tex] is the angle opposite side [tex]a[/tex]

Cos trig ratio

[tex]\cos(x)=\sf \dfrac{A}{H}[/tex]

where:

  • [tex]x[/tex] is the angle
  • A is the side adjacent the angle
  • H is the hypotenuse

Therefore:

  • A = side [tex]b[/tex]
  • H = side [tex]\sqrt{a^2+b^2}[/tex]

[tex]\implies \cos\left(\tan^{-1}\left(\dfrac{a}{b}\right)\right)=\cos(x)= \dfrac{b}{\sqrt{a^2+b^2}}[/tex]