standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
[tex](\stackrel{x_1}{4}~,~\stackrel{y_1}{-2})\qquad \qquad \stackrel{slope}{m}\implies -\cfrac{5}{4} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-2)}=\stackrel{m}{-\cfrac{5}{4}}(x-\stackrel{x_1}{4})[/tex]
[tex]y+2=-\cfrac{5}{4}x+5\implies \stackrel{\textit{multplying both sides by }\stackrel{LCD}{4}}{4(y+2)=4\left( -\cfrac{5}{4}x+5 \right)}\implies 4y+8=-5x+20 \\\\\\ 5x+4y+8=20\implies 5x+4y=12[/tex]