If using the method of completing the square to solve the quadratic equation
x² + 7x-4 = 0, which number would have to be added to "complete the square"?

Respuesta :

Answer:

The number 49/4 should be added on both sides of [tex]x^2 + 7x = 4[/tex]  to complete the square.

Step-by-step explanation:

[tex]x^{2} + 7x +\frac{49}{4} = 4 + \frac{49}{4}[/tex]

[tex]{4x^{2} + 28x + \frac{49}{4} = {16 + \frac{49}{4}[/tex]

[tex]{4x^{2} + 28x + 49} = 16 + 49[/tex]

[tex](2x + 7)2 = 65[/tex]  [since [tex]a^{2} + 2ab + b^{2} = (a + b)^{2}[/tex]]

[tex](2x + 7)^{2}[/tex] [tex]=[/tex] [tex](\sqrt65)^2[/tex]

Answer:

See below

Step-by-step explanation:

x^2 + 7x - 4 = 0      take 1/2 of the 'x ' coefficient (this is 7/2)  and do this:

(x + 7/2)^2    -4       now when you expand this (see botom line) you will see you have added  49/4  to the equation....you will need to subtract this               for the equation to be the same :

(x+7/2)^2  - 49/4 - 4  = 0     then simplify to:

(x+7/2)^2  - 65/4 = 0     you can re-arrange if needed to this:

(x+7/2)^2 = 65/4

(x+7/2)^2 = x^2 + 7x + 49/4    <====== this needs to be subtracted